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Why a robust GSP framework? T—

Rey Juan Carlos

» Data is becoming heterogeneous and pervasive
= Often defined over irregular domains and networks

= More complex structure demands more complex architectures

» GSP: models data structure as a graph
= Leverages the graph topology to process the data

Social network Brain network
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Why a robust GSP framework? T—

Rey Juan Carlos

» Data is becoming heterogeneous and pervasive
= Often defined over irregular domains and networks

= More complex structure demands more complex architectures

» GSP: models data structure as a graph
= Leverages the graph topology to process the data

» Problem: data is prone to errors and imperfections

= Noise, missing values, or outliers are pervasive in data science

Social network Brain network
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Imperfections in the graph topology Unversdn

Rey Juan Carlos

» Signal processing deals with perturbations on the signals
= Large perturbations render data useless
= Widely study in several fields
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Imperfections in the graph topology —

Rey Juan Carlos

> Signal processing deals with perturbations on the signals
= Large perturbations render data useless

= Widely study in several fields

» In GSP we encounter perturbations in the graph topology
= Even small perturbations lead to challenging problems
= Most GSP methods assume the graph is perfectly known

A

Original graph Errors in the support Noisy edges
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Imperfections in the graph topology —

Rey Juan Carlos

> Signal processing deals with perturbations on the signals
= Large perturbations render data useless

= Widely study in several fields

» In GSP we encounter perturbations in the graph topology
= Even small perturbations lead to challenging problems
= Most GSP methods assume the graph is perfectly known

A

Original graph Errors in the support Noisy edges

» This work: approach the graph Fl accounting for topology imperfections
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Fundamentals of GSP Universdad

Rey Juan Carlos

» Graph G = (V, &) with N nodes and adjacency A

= A;; = Proximity between ¢ and j T l ‘
|
» Define a signal x € R" on top of the graph T T L
= x,; = Signal value at node i ¢

> Associated with G is the graph-shift operator S € RV*Y  (e.g. A, L)
= S;;#0if i=j or (i,j) €€ (local structure in G)
= Diagonalized as S = VAV !
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Fundamentals of GSP Universdad

Rey Juan Carlos

» Graph G = (V, &) with N nodes and adjacency A
= A;; = Proximity between ¢ and j T l

» Define a signal x € R" on top of the graph T T l
= x,; = Signal value at node i ¢

> Associated with G is the graph-shift operator S € RV*Y  (e.g. A, L)
= S;;#0if i=j or (i,j) €€ (local structure in G)
= Diagonalized as S = VAV !

> Graph filters are defined as H = ZR ' h,.S"
= Diagonalized as H = Vdiag(h)V~!

= S" encodes r-hop neighborhood so Hx diffuses x across G
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GF ID and influence of perturbations Unversdn

Rey Juan Carlos

> GF identification: estimate the graph filter H = ZR ' h,.S"
= Given input/output signals X /Y € RM*M with Y = HX + W
= Leveraging that H is a polynomial of the GSO
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GF ID and influence of perturbations —

Rey Juan Carlos

> GF identification: estimate the graph filter H = ZR ' h,.S"
= Given input/output signals X /Y € RM*M with Y = HX + W
= Leveraging that H is a polynomial of the GSO

» Due to perturbations the true S is unknown
= Only perturbed S € RV*" is observed

> Q: What if we estimate the filter as H = Zf:ol h,.S" ?
= Error between S™ and S grows with r
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GF ID and influence of perturbations —

Rey Juan Carlos

> GF identification: estimate the graph filter H = ZR ' h,.S"
= Given input/output signals X /Y € RM*M with Y = HX + W
= Leveraging that H is a polynomial of the GSO

» Due to perturbations the true S is unknown
= Only perturbed S € RV*" is observed
> Q: What if we estimate the filter as H = Zf:ol h,.S" ?

= Error between S™ and S grows with r

» A: estimating H as polynomial of S results in high estimation error
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Graph perturbations —

Rey Juan Carlos

Modeling graph perturbations
» Additive perturbation models are pervasive in SP = In graphs S =S + A
= Structure of A € RV*" depends on the type of perturbation
= S and S are close according to some metric d(S, S)
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Graph perturbations —

Rey Juan Carlos

Modeling graph perturbations
» Additive perturbation models are pervasive in SP = In graphs S =S + A
= Structure of A € RV*" depends on the type of perturbation
= S and S are close according to some metric d(S, S)

Examples of topology perturbations
» When perturbations create/destroy edges = d(S,S) =||S —S|o
= Ay =1ifS;;=0and A =—1if S;; =1
» When perturbations represent noisy edges = d(S,S) = ||Se — S¢|3
= A;; =0if S;; =0and A;; ~N(0,0%) if S;; #0

A

Original graph Create/Destroy edges Noisy edges
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RFI as an optimization problem —

Rey Juan Carlos

Traditional filter identification (FI)

» Consider formulation in either vertex or frequency domain
N-1
min [|Y =Y 7,8*X|% min ||Y = Vdiag(h)VTX|%
b k=0 h
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RFI as an optimization problem —

Rey Juan Carlos

Traditional filter identification (FI)
» Consider formulation in either vertex or frequency domain

N-—-1
in||Y— hiSFX|2 in ||Y — Vdiag(h)V T X||2
min || :;] bSXIE min Y - Vdiag(h) VX
s.t. Ses s.t. VvV =1

= Modeling influence of perturbations in S¥ and V is non-trivial
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RFI as an optimization problem —

Rey Juan Carlos

Traditional filter identification (FI)
» Consider formulation in either vertex or frequency domain

N-1
in||Y— hiSFX|2 in ||Y — Vdiag(h)V T X||2
1}11171é1|| ,;] »S X% Il_:l,l‘llln diag(h) 17
s.t. Ses s.t. VvV =1

= Modeling influence of perturbations in S¥ and V is non-trivial

Robust filter identification (RFI)
» Define full H as an optimization variable and jointly estimate H and S

i - 2 S .t. SH=H
guin [[Y—HX|[z +Ad(S,S) + 5[Sllo s t. 5 S

= The constraint captures the fact that H is a polynomial of S

= Second term promotes closeness between S and S

» Operates in vertex domains + avoids computation of high-order polynomials

» Bilinear terms and ¢, render the problem non-convex
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Towards a convex formulation Unherstad

Rey Juan Carlos

Dealing with /3 norm

» We employ the /1 reweighted norm based on logarithmic penalty
I

J
1Zllo = 75(Z) = > log(|Zij] +6)

i=1 j=1
= Produces sparser solutions than ¢; norm

= Majorization-Minimization approach based on linear approximation
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Towards a convex formulation Unherstad

Rey Juan Carlos

Dealing with /3 norm

» We employ the /1 reweighted norm based on logarithmic penalty
I

J
1Zllo = 75(Z) = > log(|Zij] +6)

i=1 j=1
= Produces sparser solutions than ¢; norm

= Majorization-Minimization approach based on linear approximation

Dealing with bilinear term
» Adopt an alternating-minimization approach to break the non-linearity
= H and S are estimated in two separate iterative steps

= Each step requires solving a convex optimization problem
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Towards a convex formulation Unherstad

Rey Juan Carlos

Dealing with /3 norm
» We employ the /1 reweighted norm based on logarithmic penalty
I J
1Zllo = r5(Z) := Y > log(|Zi| +9)
i=1 j=1
= Produces sparser solutions than ¢; norm

= Majorization-Minimization approach based on linear approximation

Dealing with bilinear term
» Adopt an alternating-minimization approach to break the non-linearity
= H and S are estimated in two separate iterative steps

= Each step requires solving a convex optimization problem

» Rewrite optimization problem as
nin (1Y —FX 3473, (S—8) + 05, (8) +7/| SH-HS .

= Constraint SH = HS relaxed as a regularizer
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Alternating optimization algorithm T—

Rey Juan Carlos

> Step 1 - GF ldentification: estimate H(**1) with S® fixed

H" = arg min||Y —HX| & ++[S“H-HS" |7
= LS problem with closed-form solution inverting an N2 x N? matrix

» Step 2 - Graph Denoising: estimate S(‘*1) with H**+1) fixed

N
S =argmin D7 (A0 O[Sy~ Syl +80, V1S, )) 1 ISHOTD —HOS|2
i,j=1

= With £; weights SZE;), QE? computed from previous GSO S®

» Steps 1 and 2 repeated for t = 0, ..., t,nq — 1 iterations
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Alternating optimization algorithm T—

Rey Juan Carlos

> Step 1 - GF ldentification: estimate H(**1) with S® fixed

H"Y = arg min||Y ~HX | ++|S"H-HS"||%
= LS problem with closed-form solution inverting an N2 x N? matrix

» Step 2 - Graph Denoising: estimate S(‘*1) with H**+1) fixed

N
8 =argmin 3 (A2, V151 = S+ B2, D[S ]) +4 | SHY —HO VS| 3
=1

= With £; weights QE;). ij:) computed from previous GSO S

» Steps 1 and 2 repeated for t = 0, ..., t,,q: — 1 iterations

The RFI algorithm converges to an stationary point if S does not have
repeated eigenvalues and every row of X = V~1X are nonzero
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Joint graph filter ID T—

Rey Juan Carlos

> Now the goal is to estimate X GFs {H,}/ |
= For each Hj, we have M}, input/output signals X /Y

> Several GFs show up in relevant settings
= Different network processes on a graph Y, =H; X+ W}
= Graph-based multivariate time series Y, :ZICK:IH;CYR_H—X,,i + Wy
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Joint graph filter ID T—

Rey Juan Carlos

> Now the goal is to estimate X GFs {H,}/ |
= For each Hj, we have M}, input/output signals X /Y

> Several GFs show up in relevant settings
= Different network processes on a graph Y, =H; X+ W}
= Graph-based multivariate time series Y, :ZkK:lHkYH_k +X. + Wy

> Joint identification exploits each Hj, being a polynomial on S
K K

min Y o[ Vi X4 Mg, (S=8)+8rs, (S)+ > v[|[SH—H,S| %
SeS (M} k21 =1

= K commutativity constraints improve estimation of S

= A better estimate of S leads to better estimates of Hy,

» Solved via 2-step alternating optimization
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Efficient implementation T—

Rey Juan Carlos

» RFI algorithm has a computational complexity of O(NT)
= Prohibitive for large graphs
= Steps 1 and 2 can be accelerated via an iterative process
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Efficient implementation T—

Rey Juan Carlos

» RFI algorithm has a computational complexity of O(N7)
= Prohibitive for large graphs
= Steps 1 and 2 can be accelerated via an iterative process

> Step 1 - Efficient GF ldentification
= Estimate H**1) performing 7,,4., iterations of gradient descent

= Involves multiplications of N x N matrices

> Step 2 - Efficient Graph Denoising
= Estimate S*1 via alternating optimization for 7,4,
= Solve N2 scalar problems

= Closed-form solution based on projected soft-thresholding

» Computational complexity reduced to O(N?)
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Numerical Evaluation (1)

Universidad
Rey Juan Carlos

> Test the estimates H and S with and without robust approach
= Graphs are sampled from the small-world random graph model
= We consider different types of perturbations
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» RFI consistently outperforms classical Fl
= Clear improvement in estimation of S with respect to S

» Only destroying links is the most damaging perturbation

Samuel Rey
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Numerical Evaluation (II) o

Rey Juan Carlos

» Dataset: 5-nearest neighbor graph of weather stations in California

= Signals are temperature measurements

» Goal: Predict temperature 1 or 3 days in the future
= Estimate H using 25% or 50% of the available data

» Consider LS as a naive solution and TLS-SEM as a robust baseline

Models 1-Step 3-Step
TTS=0.25 | TTS =05 || TTS=0.25 | TTS =05

LS-GF 3.3-107% | 3.3-1073 || 84-1073 | 85-1073
TLS-SEM 4.0-10! 3.7-1072 || 6.8-107! | 5.5-1072
RFI 34-1073 | 3.1-1072 || 85-1073 | 7.5-1073

LS 69-10% | 31-1072% || 21-107%2 | 9.1-10°3
AR(3)-RFI || 3.2-1073 | 2.8-10723 || 7.8-107% | 6.9-1073

» Best performance achieved by joint inference assuming AR model of order 3
= Follow up closely by the (separate) RFI algorithm

Samuel Rey Robust Graph Filter Identification and Graph Denoising from Signal Observations



Closing remarks T—

Rey Juan Carlos

» Proposed a general robust graph filter identification model that

= Simultaneously learns S and H

» Problem formulated as a non-convex optimization problem
=- Convex algorithm based on AM and MM techniques

= Proposed algorithm is shown to converge to a stationary point

» Generalized to joint GF identification to deal with several GFs

v

Efficient algorithm to deal with graphs with large number of nodes

» Numerical evaluation over synthetic and real-world graphs

= Code: https://github.com/reysam93/graph_denoising
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https://github.com/reysam93/graph_denoising

Universidad
Rey Juan Carlos

Questions at: samuel.rey.escudero@urjc.es
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