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Contribution

» We introduce a convolution operation over the Tangent Bundle of Riemannian manifolds
exploiting the Connection Laplacian operator

» We define Tangent Bundle Filters and Tangent Bundle Neural Networks (TNNs), novel
architectures operating on tangent bundle signals, i.e. vector fields over manifolds

» We discretize TNNs both in space and time, showing that their discrete counterpart is a novel
principled variant of the recently introduced Sheaf Neural Networks

» We prove that the discrete architecture converges to the underlying continuous TNN
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Preliminary Definitions: Manifolds and Tangent Bundles

» We consider a compact and smooth d-dimensional manifold M embedded in R”
> Each point x € M is endowed with a d—dimensional tangent (vector) space TxM = R?
» v € T, M is said to be a tangent vector at x

> Tangent vectors can be seen as the velocity vector of a curve over M passing through the point x

M
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Preliminary Definitions: Manifolds and Tangent Bundles

» We consider a compact and smooth d-dimensional manifold M embedded in R”

» Each point x € M is endowed with a d—dimensional tangent (vector) space T, M 22 R?
» v € T, M is said to be a tangent vector at x

> The disjoint union of the tangent spaces is called the tangent bundle TM = | |, ., XM

» Each tangent space 7.M with a Riemann metric given, for each v,w € T, M, by
<V, W>Tx/\/l =iv-iw,
where v € TXRP is the embedding of v € TxM in TXR? C R” (the d-dimensional subspace of RP
which is the embedding of T, M in RP)

» The Riemann metric induces a probability measure i over the manifold
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Preliminary Definitions: Tangent Bundle Signals and the Connection Laplacian

» A Tangent Bundle Signal is a vector field over the manifold, thus a mapping F : M — T M that
associates to each point of the manifold a vector in the corresponding tangent space
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Preliminary Definitions: Tangent Bundle Signals and the Connection Laplacian

» A Tangent Bundle Signal is a vector field over the manifold, thus a mapping F : M — T M that
associates to each point of the manifold a vector in the corresponding tangent space

» An inner product for tangent bundle signals F and G is
(F.Ghrat = [ (FO. GO0} masdi(),
M

and the induced norm is ||F||5 ¢ = (F,F)7m

> We denote with £?(7T M) the Hilbert Space of finite energy tangent bundle signals
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Preliminary Definitions: Tangent Bundle Signals and the Connection Laplacian

» A Tangent Bundle Signal is a vector field over the manifold, thus a mapping F : M — T M that
associates to each point of the manifold a vector in the corresponding tangent space

» An inner product for tangent bundle signals F and G is
(F.Ghrat = [ (FO. GO0} masdi(),
M

and the induced norm is ||F||5 ¢ = (F,F)7m
> We denote with £?(7T M) the Hilbert Space of finite energy tangent bundle signals

> The Connection Laplacian is a (second-order) operator A : £L2(T M) — L2(T M), given by the
trace of the second covariant derivative defined via the Levi-Cita connection

» It is a means to diffuse vectors from one tangent space to another, because it encodes:
»> when tangent vectors are " parallel” (via the Connection)

> how to "move" them keeping them parallel (via the induced Parallel Transport operator)

Tangent Bundle Filters and Neural Networks: from Manifolds to Cellular Sheaves and Back 7



Connection Laplacian and Heat Equation

» The Connection Laplacian characterize the vector heat equation over manifolds, governing the

diffusion of tangent vectors:

oU(x, t) B -
et~ AU ) =0,

where U : M x Ry — T M and U(-, t) € L2(TM)Vt € RS
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Connection Laplacian and Heat Equation

» The Connection Laplacian characterize the vector heat equation over manifolds, governing the

diffusion of tangent vectors:

oU(x, t) B -
et~ AU ) =0,

where U : M x Ry — T M and U(-, t) € L2(TM)Vt € RS

> With initial condition set as U(x,0) = F(x), the solution is given by
U(x,t) = e"*F(x),

Figure: " The Vector Heat Method”, Sharp et al., ACM ToG, 2019
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Connection Laplacian and Heat Equation

» The Connection Laplacian characterize the vector heat equation over manifolds, governing the
diffusion of tangent vectors:

V) AU(x, t) =0,
where U : M x Ry — T M and U(-, t) € L2(TM)Vt € RS

» With initial condition set as U(x,0) = F(x), the solution is given by
U(x,t) = e"*F(x)

> A is a negative semidefinite, self-adjoint and elliptic operator, and this leads to a discrete
spectrum {—M\;, i}, such that:

[e’s}

AF =" —\(F, i) mpi

i=1
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Tangent Bundle Convolution

Definition (Tangent Bundle Convolutional Filter)

The tangent bundle filter with impulse response h:R* = R, denoted as h, is given by
G(x) = (hF)(x) := (hx7mF)(x) ::/ h(t)U(x, t)dt,
0

where hx(F is the manifold convolution of h and F, U(x, t) is the solution of the heat equation
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Tangent Bundle Convolution

Definition (Tangent Bundle Convolutional Filter)

The tangent bundle filter with impulse response h:R* = R, denoted as h, is given by

G(x) = (hF)(x) := (hx7mF)(x) == /000 h(t)U(x, t)dt,

where hx(F is the manifold convolution of h and F, U(x, t) is the solution of the heat equation

Injecting the heat equation solution, we can express the convolution with a parametric map

G(x) = (hF)(x) = /Ooo h(t)e "F(x)dt = h(A)F(x)
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Tangent Bundle Convolution in Spectral Domain

» We project the convolution input and output functions onto the eigenvectorfields ¢;

[é]: = (G, ¢i) = /OOO E(t)eib\idt[ﬂ;
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Tangent Bundle Convolution in Spectral Domain

» We project the convolution input and output functions onto the eigenvectorfields ¢;

[(A;]I = (G, ¢i) = /O°° E(t)eib\idt[ﬂ/

Definition (Frequency Response)

Given a tangent bundle filter h(A), the frequency response of this filter can be written as

h(\) = /Ooc h(t)e™dt
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Tangent Bundle Convolution in Spectral Domain

» We project the convolution input and output functions onto the eigenvectorfields ¢;

[(A;]I = (G, ¢i) = /O°° E(t)eib\idt[ﬂ/

Definition (Frequency Response)

Given a tangent bundle filter h(A), the frequency response of this filter can be written as

h(\) = /Ooc h(t)e™dt

> The manifold filter h(A) is pointwise in the frequency domain as [G]. = h(\)[F].

i i
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Manifold Convolutions in Spectral Domain

» We project the convolution input and output functions onto the eigenvectorfields ¢;

(6], = (G0 = [ e VarlF,

Definition (Bandlimited tangent bundle signal)
A tangent bundle signal is defined as A\y-bandlimitd with Ay > 0 if [’E], = 0 for all i such that

i > .

» The manifold filter h(A) is pointwise in the frequency domain as [é] = B(A,)[IA:}

i i
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Tangent Bundle Neural Networks

» A Tangent Bundle Neural Network (TNN) is a
cascade of L layers
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Tangent Bundle Neural Networks

» A Tangent Bundle Neural Network (TNN) is a
cascade of L layers

» Each of the layer is composed of

» Tangent Bundle convolutions h(A)

» Pointwise nonlinearities o
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Tangent Bundle Neural Networks

» A Tangent Bundle Neural Network (TNN) is a
cascade of L layers

» Each of the layer is composed of

» Tangent Bundle convolutions h(A)

» Pointwise nonlinearities o

» Define the learnable parameter set in h(A) as ‘H
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Tangent Bundle Neural Networks

F(x)
{
» A Tangent Bundle Neural Network (TNN) is a Y1 (x)
cascade of L layers Yi(x) = hi(A)F(x) [—> Fi(x) = o (Y1(x))
T Layer 1
. F100
» Each of the layer is composed of F1(x)
» Tangent Bundle convolutions h(A) V()
> N . g Ya(x) = ha(A)F1(x) ——| Fa(x) = o (Y2(x))
Pointwise nonlinearities o
T Layer 2
. l Fa(x)
» Define the learnable parameter set in h(A) as ‘H 209
Y3(x)
. Ya(x) = hp(A)Fa(x) ——> F3(x) = o (Y3(x))
» TNN can be written as a map Y = ¥(H, A, F) : ey @

L F3(x) = ¥(H, A, F)
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Cellular Sheaves in a (too tiny) Nutshell

» A cellular sheaf over an undirected graph consists of an assignment of a vector space to each node
and edge in the graph and a map between these spaces for each incident node-edge pair

» Given an undirected graph G = (V, £), with |V| = n, a cellular sheaf TM, = (G, F) is:
> A vector space F(v) for each v € V. We refer to these vector spaces as nodes stalks
> A vector space F(e) for each e € £. We refer to these vector spaces as edges stalks

> A linear mapping V[, : F(v) — F(e) for each incident v<e node-edge pair. We refer to these
mappings as restriction maps

> All the spaces associated with the nodes of the graph form the space of sheaf signals £*(7M.,)

> The Sheaf Laplacian of a sheaf T M, is a linear mapping A, : £2(TM,) — L*(T M) defined
node-wise. In particular, given a sheaf signal f,, it holds:

(Anf)(v) = > V/ o(Vyefa(v) = Vi efa(u))

» In this work, we focus on orthogonal cellular sheaves, i.e. sheaves with orthogonal restriction maps
and stalks with same dimension d
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Discretization in the Space Domain 1

» Orthogonal Cellular Sheaves connecting the points can capture the geometric structure — they
can be seen as discretized manifolds and approximated tangent bundles

> X = {x1,%,...,x,} CRP are n points sampled uniformly over the manifold M

> We first build a geometric weighted graph connecting points x; and x; with weigts:

Xi — Xj 2
wij = exp ('\/” 1(0 < [1x — x> < ve)
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Discretization in the Space Domain 1

» Orthogonal Cellular Sheaves connecting the points can capture the geometric structure — they
can be seen as discretized manifolds and approximated tangent bundles

> X = {x1,%,...,x,} CRP are n points sampled uniformly over the manifold M

> We first build a geometric weighted graph connecting points x; and x; with weigts:

Xi — Xj 2
wij = exp ('\/” 1(0 < [1x — x> < ve)

» The graph is not sufficient to correctly approximate the manifold and its tangent bundle — we
need to equip it with nodes stalks, edge stalks and restriction maps
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Discretization in the Space Domain 2

> We assign to each node i an orthogonal transformation O; € RP*¢ computed via a local PCA
procedure (from " Vector diffusion maps and the Connection Laplacian”, Singer, Wu, 2012)

» Q; is a basis of the i-th node stalk and represents an approximation of a basis of the tangent

space T, M
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Discretization in the Space Domain 2

> We assign to each node i an orthogonal transformation O; € RP*¢ computed via a local PCA
procedure (from " Vector diffusion maps and the Connection Laplacian”, Singer, Wu, 2012)

» Q; is a basis of the i-th node stalk and represents an approximation of a basis of the tangent

space T, M

» The restriction maps of the edge (/, /) are given by the SVD M;; and right V,TJ of O;TOJ‘
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Discretization in the Space Domain 2

> We assign to each node i an orthogonal transformation O; € RP*¢ computed via a local PCA
procedure (from " Vector diffusion maps and the Connection Laplacian”, Singer, Wu, 2012)

» Q; is a basis of the i-th node stalk and represents an approximation of a basis of the tangent

space T, M
» The restriction maps of the edge (/, /) are given by the SVD M;; and right V,TJ of O;TOJ‘

> O, = M,-JV,E- represents an approximated transport operator from x; to x;
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Discretization in the Space Domain 3

» We build block matrix S € R™*" and a diagonal block matrix D € R™*™ with blocks defined as
S,'yj = W,'yjﬁ,-ilo,',jﬁjil, D,‘y,‘ = ndeg(i)ld,

where D; = deg(i)ly, deg(i) = > wij, and ndeg(i) = >°; wi,;/(deg(i)deg(j))
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Discretization in the Space Domain 3

» We build block matrix S € R™*" and a diagonal block matrix D € R™*™ with blocks defined as
S,'yj = W,'yjﬁ,-ilo,',jﬁjil, D,‘y,‘ = ndeg(i)ld,

where D; = deg(i)ly, deg(i) = > wij, and ndeg(i) = >°; wi,;/(deg(i)deg(j))

» Finally, the (normalized) Sheaf Laplacian is the following block matrix
An _ Efl(Dfls _ |) c Rndxnd

» The Sheaf Laplacians A, is proved to converge to the Connection Laplacian of manifold M
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Discretization in the Space Domain 4

» In our context, a sheaf signal f, is defined as a sampled version of a tangent bundle signal F
f, = QFYF € R™,
fa(xi) := [F](i—1)ar1)(ienyg = Oi T F(x), xi € X
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Discretization in the Space Domain 4

» In our context, a sheaf signal f, is defined as a sampled version of a tangent bundle signal F
f, = QFYF € R™,
fa(xi) := [F](i—1)ar1)(ienyg = Oi T F(x), xi € X

» We can define a discrete tangent bundle filter as

g, = / h(t)e*®"dtf, = h(A,)f, € R™
0
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Discretization in the Space Domain 4

» In our context, a sheaf signal f, is defined as a sampled version of a tangent bundle signal F
f, = QFYF € R™,
fa(xi) := [F](i—1)ar1)(ienyg = Oi T F(x), xi € X

» We can define a discrete tangent bundle filter as

g, = / h(t)e*®"dtf, = h(A,)f, € R™
0

» We can define a discretized space tangent bundle neural network (D-TNN) as the stack of L layers:
yn = o (h(An)f,)

» D-TNN can be written as a map y, = ¥(H, A,, f,)
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Convergence of Discretized MNNs

Theorem (Convergence of D-TNN to TNN)
Let \II(H, Y ) be the output of a neural network with L layers parameterized by the operator A
of TM (TNN) or by the discrete operator A, of T M, (D-TNN). If:

» the frequency response of filters in H are non-amplifying and Lipschitz continuous

» F and Q;°F are bandlimited tangent bundle and sheaf signals, respectively

> The kernel scale ¢ = n~2/(d+4)

then it holds that:

lim || ®(H,An, ) — QZ,Y\I!(’H, A, F)||7m, = 0in probability.
n—o0o
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Discretization in the Time Domain

» Discretize function il(t) in the continuous time domain with a fixed sampling interval T

» Replace the filter response function with a series of coefficients hy = I~1(k Ts), k=0,1,2....
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Discretization in the Time Domain

» Discretize function il(t) in the continuous time domain with a fixed sampling interval T

» Replace the filter response function with a series of coefficients hy = I~1(k Ts), k=0,1,2....

K=1
> Fix a finite number of K samples over the time horizon h(A)F(x) = 3 hee ™ *F(x)
k=0
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Discretization in the Time Domain

» Discretize function il(t) in the continuous time domain with a fixed sampling interval T

» Replace the filter response function with a series of coefficients hy = I~1(k Ts), k=0,1,2....

2_:1 he kA F(x)

=0

K
» Fix a finite number of K samples over the time horizon h(A)F(x) =
K
» Inject the time discretized filter on the discretized manifold:
K—1

gnh = h(An)fn = Z hkeikAnfn
k=0
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Discretization in the Time Domain

» Discretize function il(t) in the continuous time domain with a fixed sampling interval T

» Replace the filter response function with a series of coefficients hy = I~1(k Ts), k=0,1,2....
K—1

> Fix a finite number of K samples over the time horizon h(A)F(x) = 3 hee ™ *F(x)
k=0

» Inject the time discretized filter on the discretized manifold:
K—1
gnh = h(An)fn = Z hkeikAnfn
k=0

» The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

Y, = o—<i (eA")anHk>

k=1

» DD-TNN are a novel principled variant of Sheaf Neural Networks!
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Numerical Results

» We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere
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Numerical Results

» We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere
» We uniformly sample the sphere on n points X = {x1,...,Xn}
> We add AWGN with variance 72 obtaining a noisy field

» We compare DD-TNNs and Manifold Neural Networks (MNNs), obtained by discretizations of the

Laplace-Beltrami operator (thus, without taking into account the bundle structure)
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Numerical Results

» \We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere
» We uniformly sample the sphere on n points X = {x1,...,Xn}

» We add AWGN with variance 7 obtaining a noisy field

T=10"7 T=5-10"7 T=1-10"
DD-TNN | 2-107*+16-10"° | 49.-103+24-107* | 1.9-1072+1.3-107°
n = 200
MNN 20.-107*+15-107% | 7-107%+28-107* | 29-1072+15-107°%
DD-TNN | 2-107%+5.7-107° 5.1073+12-107* | 19-10°2+46-10"*
n = 800

MNN 28-107%+87-107° | 73-10°3+1.7-107* | 29-1072+6.9-107*

Table: MSE on the denoising task
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Conclusion

» This is the first work to introduce a signal processing framework for signals defined on tangent
bundles of Riemann manifolds via the Connection Laplacian

» The presented discretization procedure and convergencence result explicitly link the manifold
domain with cellular sheaves

» In future work, we will investigate more general classes of cellular sheaves that approximate unions
of manifolds

» We believe our perspective on TNNs could shed further light on challenging problems in graph
neural networks such as heterophily, over-squashing, or transferability
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Extensions and Contacts

» The preprint of the journal version of this paper is online! More theory, more experiments, more
FUN (?): https://arxiv.org/abs/2303.11323

» My Linkedin https://www.linkedin.com/in/claudio-battiloro-b4390b175/ and Twitter
https://twitter.com/ClaBat9:
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