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Contribution

▶ We introduce a convolution operation over the Tangent Bundle of Riemannian manifolds
exploiting the Connection Laplacian operator

▶ We define Tangent Bundle Filters and Tangent Bundle Neural Networks (TNNs), novel
architectures operating on tangent bundle signals, i.e. vector fields over manifolds

▶ We discretize TNNs both in space and time, showing that their discrete counterpart is a novel
principled variant of the recently introduced Sheaf Neural Networks

▶ We prove that the discrete architecture converges to the underlying continuous TNN
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Preliminary Definitions: Manifolds and Tangent Bundles

▶ We consider a compact and smooth d-dimensional manifold M embedded in Rp

▶ Each point x ∈ M is endowed with a d−dimensional tangent (vector) space TxM ∼= Rd

▶ v ∈ TxM is said to be a tangent vector at x

▶ Tangent vectors can be seen as the velocity vector of a curve over M passing through the point x
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Preliminary Definitions: Manifolds and Tangent Bundles

▶ We consider a compact and smooth d-dimensional manifold M embedded in Rp

▶ Each point x ∈ M is endowed with a d−dimensional tangent (vector) space TxM ∼= Rd

▶ v ∈ TxM is said to be a tangent vector at x

▶ The disjoint union of the tangent spaces is called the tangent bundle T M =
⊔

x∈M TxM

▶ Each tangent space TxM with a Riemann metric given, for each v,w ∈ TxM, by

⟨v,w⟩TxM = iv · iw,

where iv ∈ TxRp is the embedding of v ∈ TxM in TxRp ⊂ Rp (the d-dimensional subspace of Rp

which is the embedding of TxM in Rp)

▶ The Riemann metric induces a probability measure µ over the manifold
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Preliminary Definitions: Tangent Bundle Signals and the Connection Laplacian

▶ A Tangent Bundle Signal is a vector field over the manifold, thus a mapping F : M → T M that
associates to each point of the manifold a vector in the corresponding tangent space
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Preliminary Definitions: Tangent Bundle Signals and the Connection Laplacian

▶ A Tangent Bundle Signal is a vector field over the manifold, thus a mapping F : M → T M that
associates to each point of the manifold a vector in the corresponding tangent space

▶ An inner product for tangent bundle signals F and G is

⟨F,G⟩T M =

∫
M

⟨F(x),G(x)⟩TxMdµ(x),

and the induced norm is ||F||2T M = ⟨F,F⟩T M

▶ We denote with L2(T M) the Hilbert Space of finite energy tangent bundle signals

▶ The Connection Laplacian is a (second-order) operator ∆ : L2(T M) → L2(T M), given by the
trace of the second covariant derivative defined via the Levi-Cita connection

▶ It is a means to diffuse vectors from one tangent space to another, because it encodes:

▶ when tangent vectors are ”parallel” (via the Connection)

▶ how to ”move” them keeping them parallel (via the induced Parallel Transport operator)
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Connection Laplacian and Heat Equation

▶ The Connection Laplacian characterize the vector heat equation over manifolds, governing the
diffusion of tangent vectors:

∂U(x , t)

∂t
−∆U(x , t) = 0,

where U : M× R+
0 → T M and U(·, t) ∈ L2(T M) ∀t ∈ R+

0

▶ With initial condition set as U(x , 0) = F(x), the solution is given by

U(x , t) = et∆F(x),

Figure: ”The Vector Heat Method”, Sharp et al., ACM ToG, 2019
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Connection Laplacian and Heat Equation

▶ The Connection Laplacian characterize the vector heat equation over manifolds, governing the
diffusion of tangent vectors:

∂U(x , t)

∂t
−∆U(x , t) = 0,

where U : M× R+
0 → T M and U(·, t) ∈ L2(T M) ∀t ∈ R+

0

▶ With initial condition set as U(x , 0) = F(x), the solution is given by

U(x , t) = et∆F(x)

▶ ∆ is a negative semidefinite, self-adjoint and elliptic operator, and this leads to a discrete
spectrum {−λi ,ϕi}∞i=1, such that:

∆F =
∞∑
i=1

−λi ⟨F,ϕi ⟩T Mϕi
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Tangent Bundle Convolution

Definition (Tangent Bundle Convolutional Filter)

The tangent bundle filter with impulse response h̃ : R+ → R, denoted as h, is given by

G(x) = (hF)(x) := (h̃⋆T MF)(x) :=

∫ ∞

0

h̃(t)U(x , t)dt,

where h̃⋆MF is the manifold convolution of h̃ and F, U(x , t) is the solution of the heat equation

Injecting the heat equation solution, we can express the convolution with a parametric map

G(x) = (hF)(x) =

∫ ∞

0

h̃(t)e−t∆F(x)dt = h(∆)F(x)
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Tangent Bundle Convolution in Spectral Domain

▶ We project the convolution input and output functions onto the eigenvectorfields ϕi[
Ĝ
]
i
= ⟨G,ϕi ⟩ =

∫ ∞

0

h̃(t)e−tλi dt
[
F̂
]
i

Definition (Frequency Response)

Given a tangent bundle filter h(∆), the frequency response of this filter can be written as

ĥ(λ) =

∫ ∞

0

h̃(t)e−tλdt

▶ The manifold filter h(∆) is pointwise in the frequency domain as
[
Ĝ
]
i
= ĥ(λi )

[
F̂
]
i
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Manifold Convolutions in Spectral Domain

▶ We project the convolution input and output functions onto the eigenvectorfields ϕi[
Ĝ
]
i
= ⟨G,ϕi ⟩ =

∫ ∞

0

h̃(t)e−tλi dt
[
F̂
]
i

Definition (Bandlimited tangent bundle signal)

A tangent bundle signal is defined as λM -bandlimitd with λM > 0 if
[
F̂
]
i
= 0 for all i such that

λi > λM .

▶ The manifold filter h(∆) is pointwise in the frequency domain as
[
Ĝ
]
i
= ĥ(λi )

[
F̂
]
i
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Tangent Bundle Neural Networks

▶ A Tangent Bundle Neural Network (TNN) is a
cascade of L layers

▶ Each of the layer is composed of

▶ Tangent Bundle convolutions h(∆)

▶ Pointwise nonlinearities σ

▶ Define the learnable parameter set in h(∆) as H

▶ TNN can be written as a map Y = Ψ(H,∆,F)

Layer 1

Layer 2

Layer 3

F(x)

Y1(x) = h1(∆)F(x) F1(x) = σ (Y1(x))
Y1(x)

Y2(x) = h2(∆)F1(x) F2(x) = σ (Y2(x))
Y2(x)

Y2(x) = h2(∆)F2(x) F3(x) = σ (Y3(x))
Y3(x)

F1(x)
F1(x)

F2(x)
F2(x)

F3(x) = Ψ(H,∆, F)
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Cellular Sheaves in a (too tiny) Nutshell

▶ A cellular sheaf over an undirected graph consists of an assignment of a vector space to each node
and edge in the graph and a map between these spaces for each incident node-edge pair

▶ Given an undirected graph G = (V, E), with |V| = n, a cellular sheaf T Mn = (G,F) is:

▶ A vector space F(v) for each v ∈ V. We refer to these vector spaces as nodes stalks

▶ A vector space F(e) for each e ∈ E. We refer to these vector spaces as edges stalks

▶ A linear mapping VT
v,e : F(v) → F(e) for each incident v◁e node-edge pair. We refer to these

mappings as restriction maps

▶ All the spaces associated with the nodes of the graph form the space of sheaf signals L2(T Mn)

▶ The Sheaf Laplacian of a sheaf T Mn is a linear mapping ∆n : L2(T Mn) → L2(T Mn) defined
node-wise. In particular, given a sheaf signal fn, it holds:

(∆nfn)(v) =
∑
v,u◁e

VT
v,e(Vv,e fn(v)− Vu,e fn(u))

▶ In this work, we focus on orthogonal cellular sheaves, i.e. sheaves with orthogonal restriction maps
and stalks with same dimension d
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Discretization in the Space Domain 1

▶ Orthogonal Cellular Sheaves connecting the points can capture the geometric structure → they
can be seen as discretized manifolds and approximated tangent bundles

▶ X = {x1, x2, . . . , xn} ⊂ Rp are n points sampled uniformly over the manifold M

▶ We first build a geometric weighted graph connecting points xi and xj with weigts:

wi,j = exp

(
||xi − xj ||2√

ϵ

)
I
(
0 < ||xi − xj ||2 ≤

√
ϵ
)

▶ The graph is not sufficient to correctly approximate the manifold and its tangent bundle → we
need to equip it with nodes stalks, edge stalks and restriction maps
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Discretization in the Space Domain 2

▶ We assign to each node i an orthogonal transformation Oi ∈ Rp×d computed via a local PCA
procedure (from ”Vector diffusion maps and the Connection Laplacian”, Singer, Wu, 2012)

▶ Oi is a basis of the i-th node stalk and represents an approximation of a basis of the tangent
space TxiM

▶ The restriction maps of the edge (i , j) are given by the SVD Mi,j and right VT
i,j of Oi

TOj

▶ Oi,j = Mi,jV
T
i,j represents an approximated transport operator from xi to xj
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Discretization in the Space Domain 3

▶ We build block matrix S ∈ Rnd×nd and a diagonal block matrix D ∈ Rnd×nd with blocks defined as

Si,j = wi,jD̃
−1
i Oi,jD̃

−1
j , Di,i = ndeg(i)Id ,

where D̃i = deg(i)Id , deg(i) =
∑

j wi,j , and ndeg(i) =
∑

j wi,j/(deg(i)deg(j))

▶ Finally, the (normalized) Sheaf Laplacian is the following block matrix

∆n = ϵ−1(D−1S− I
)
∈ Rnd×nd

▶ The Sheaf Laplacians ∆n is proved to converge to the Connection Laplacian of manifold M
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Discretization in the Space Domain 4

▶ In our context, a sheaf signal fn is defined as a sampled version of a tangent bundle signal F

fn = ΩX
n F ∈ Rnd ,

fn(xi ) := [fn]((i−1)d+1):(i+1)d = Oi
T iF(xi ), xi ∈ X

▶ We can define a discrete tangent bundle filter as

gn =

∫ ∞

0

h̃(t)et∆ndtfn = h(∆n)fn ∈ Rnd

▶ We can define a discretized space tangent bundle neural network (D-TNN) as the stack of L layers:

yn = σ (h(∆n)fn)

▶ D-TNN can be written as a map yn = Ψ(H,∆n, fn)
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Convergence of Discretized MNNs

Theorem (Convergence of D-TNN to TNN)

Let Ψ
(
H, ·, ·

)
be the output of a neural network with L layers parameterized by the operator ∆

of T M (TNN) or by the discrete operator ∆n of T Mn (D-TNN). If:

▶ the frequency response of filters in H are non-amplifying and Lipschitz continuous

▶ F and ΩX
n F are bandlimited tangent bundle and sheaf signals, respectively

▶ The kernel scale ϵ = n−2/(d+4)

then it holds that:

lim
n→∞

||Ψ
(
H,∆n, fn)−ΩX

n Ψ
(
H,∆,F

)
||T Mn = 0 in probability.
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Discretization in the Time Domain

▶ Discretize function h̃(t) in the continuous time domain with a fixed sampling interval Ts

▶ Replace the filter response function with a series of coefficients hk = h̃(kTs), k = 0, 1, 2 . . . .

▶ Fix a finite number of K samples over the time horizon h(∆)F(x) =
K−1∑
k=0

hke
−k∆F(x)

▶ Inject the time discretized filter on the discretized manifold:

gn = h(∆n)fn =
K−1∑
k=0

hke
−k∆n fn

▶ The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

Yn = σ

(
K∑

k=1

(
e∆n
)k
FnHk

)

▶ DD-TNN are a novel principled variant of Sheaf Neural Networks!
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Discretization in the Time Domain

▶ Discretize function h̃(t) in the continuous time domain with a fixed sampling interval Ts

▶ Replace the filter response function with a series of coefficients hk = h̃(kTs), k = 0, 1, 2 . . . .

▶ Fix a finite number of K samples over the time horizon h(∆)F(x) =
K−1∑
k=0

hke
−k∆F(x)

▶ Inject the time discretized filter on the discretized manifold:

gn = h(∆n)fn =
K−1∑
k=0

hke
−k∆n fn

▶ The discretized space-time TNN (DD-TNN) is then given by (suppose multiple inputs/outputs):

Yn = σ

(
K∑

k=1

(
e∆n
)k
FnHk

)

▶ DD-TNN are a novel principled variant of Sheaf Neural Networks!
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Numerical Results

▶ We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere
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Numerical Results

▶ We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere

▶ We uniformly sample the sphere on n points X = {x1, . . . , xn}

▶ We add AWGN with variance τ 2 obtaining a noisy field

▶ We compare DD-TNNs and Manifold Neural Networks (MNNs), obtained by discretizations of the

Laplace-Beltrami operator (thus, without taking into account the bundle structure)
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Numerical Results

▶ We assess the consistency of the proposed framework by designing a denoising task of a tangent

vector field over the unit 2-sphere

▶ We uniformly sample the sphere on n points X = {x1, . . . , xn}

▶ We add AWGN with variance τ 2 obtaining a noisy field

τ = 10−2 τ = 5 · 10−2 τ = 1 · 10−1

n = 200
DD-TNN 2 · 10−4 ± 1.6 · 10−5 4.9 · 10−3 ± 2.4 · 10−4 1.9 · 10−2 ± 1.3 · 10−3

MNN 2.9 · 10−4 ± 1.5 · 10−5 7 · 10−3 ± 2.8 · 10−4 2.9 · 10−2 ± 1.5 · 10−3

n = 800
DD-TNN 2 · 10−4 ± 5.7 · 10−6 5 · 10−3 ± 1.2 · 10−4 1.9 · 10−2 ± 4.6 · 10−4

MNN 2.8 · 10−4 ± 8.7 · 10−6 7.3 · 10−3 ± 1.7 · 10−4 2.9 · 10−2 ± 6.9 · 10−4

Table: MSE on the denoising task
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Conclusion

▶ This is the first work to introduce a signal processing framework for signals defined on tangent
bundles of Riemann manifolds via the Connection Laplacian

▶ The presented discretization procedure and convergencence result explicitly link the manifold
domain with cellular sheaves

▶ In future work, we will investigate more general classes of cellular sheaves that approximate unions
of manifolds

▶ We believe our perspective on TNNs could shed further light on challenging problems in graph
neural networks such as heterophily, over-squashing, or transferability
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Extensions and Contacts

▶ The preprint of the journal version of this paper is online! More theory, more experiments, more
FUN (?): https://arxiv.org/abs/2303.11323

▶ My Linkedin https://www.linkedin.com/in/claudio-battiloro-b4390b175/ and Twitter
https://twitter.com/ClaBat9:

▶ We proved that the discrete architecture converges to the underlying continuous TNN

▶ We assessed the effectiveness of the proposed architecture on a denoising task
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